TC 9-237 – Chapter 6 – Section I



The purpose of this chapter is to outline the various techniques used in welding processes. Welding processes may be broken down into many categories. Various methods and materials may be used to accomplish good welding practices. Common methods of welding used in modern metal fabrication and repair are shown in figure 6-1.

chart of welding processes


The term arc welding applies to a large and varied group of processes that use an electric arc as the source of heat to melt and join metals. In arc welding processes, the joining of metals, or weld, is produced by the extreme heat of an electric arc drawn between an electrode and the workpiece, or between two electrodes. The formation of a joint between metals being arc welded may or may not require the use of pressure or filler metal. The arc is struck between the workpiece and an electrode that is mechanically or manually moved along the joint, or that remains stationary while the workpiece is roved underneath it. The electrode will be either a consumable wire rod or a nonconsumable carbon or tungsten rod which carries the current and sustains the electric arc between its tip and the workpiece. When a nonconsumable electrode is used, a separate rod or wire can supply filler material, if needed. A consumable electrode is specially prepared so that it not only conducts the current and sustains the arc, but also melts and supplies filler metal to the joint, and may produce a slag covering as well.

a. Metal Electrodes. In bare metal-arc welding, the arc is drawn between a bare or lightly coated consumable electrode and the workpiece. Filler metal is obtained from the electrode, and neither shielding nor pressure is used. This type of welding electrode is rarely used, however, because of its low strength, brittleness, and difficulty in controlling the arc.

(1) Stud welding. The stud welding process produces a joining of metals by heating them with an arc drawn between a metal stud, or similar part, and the workpiece. The molten surfaces to be joined, when properly heated, are forced together under pressure. No shielding gas is used. The most common materials welded with the arc stud weld process are low carbon steel, stainless steel, and aluminum. Figure 6-2 shows a typical equipment setup for arc stud welding.

Equipment setup for arc stud welding

(2) Gas shielded stud welding. This process, a variation of stud welding, is basically the same as that used for stud welding, except that an inert gas or flux, such as argon or helium, is used for shielding. Shielding gases and fluxes are used when welding nonferrous metals such as aluminum and magnesium. Figure 6-3 shows a typical setup for gas shielded arc stud welding.

Equipment setup for gas shielded arc stud welding

(3) Submerged arc welding. This process joins metals by heating them with an arc maintained between a bare metal electrode and the workpiece. The arc is shielded by a blanket of granular fusible material and the workpiece. Pressure is not used and filler metal is obtained from the electrode or from a supplementary welding rod. Submerged arc welding is distinguished from other arc welding processes by the granular material that covers the welding area. This granular material is called a flux, although it performs several other important functions. It is responsible for the high deposition rates and weld quality that characterize the submerged arc welding process in joining and surfacing applications. Basically, in submerged arc welding, the end of a continuous bare wire electrode is inserted into a mound of flux that covers the area or joint to be welded. An arc is initiated, causing the base metal, electrode, and flux in the immediate vicinity to melt. The electrode is advanced in the direction of welding and mechanically fed into the arc, while flux is steadily added. The melted base metal and filler metal flow together to form a molten pool in the joint. At the same time, the melted flux floats to the surface to form a protective slag cover. Figure 6-4 shows the submerged arc welding process.

Submerged arc welding process

(4) Gas tungsten-arc welding (TIG welding or GTAW). The arc is drawn between a nonconsumable tungsten electrode and the workpiece. Shielding is obtained from an inert gas or gas mixture. Pressure and/or filler metal may or may not be used. The arc fuses the metal being welded as well as filler metal, if used. The shield gas protects the electrode and weld pool and provides the required arc characteristics. A variety of tungsten electrodes are used with the process. The electrode is normally ground to a point or truncated cone configuration to minimize arc wandering. The operation of typical gas shielded arc welding machines may be found in TM 5-3431-211-15 and TM 5-3431-313-15. Figure 6-5 shows the relative position of the torch, arc, tungsten electrode, gas shield, and the welding rod (wire) as it is being fed into the arc and weld pool.

gas tungsten arc welding

(5) Gas metal-arc Welding (MIG welding or GMAW). In this process, coalescence is produced by heating metals with an arc between a continuous filler metal (consumable) electrode and the workpiece. The arc, electrode tip and molten weld metal are shielded from the atmosphere by a gas. Shielding is obtained entirely from an externally supplied inert gas, gas mixture, or a mixture o f a gas and a flux. The electrode wire for MIG welding is continuously fed into the arc and deposited as weld metal. Electrodes used for MIG welding are quite small in diameter compared to those used in other types of welding. Wire diameters 0.05 to 0.06 in. (0.13 to 0.15 cm) are average. Because of the small sizes of the electrode and high currents used in MIG welding, the melting rates of the electrodes are very high. Electrodes must always be provided as long, continuous strands of tempered wire that can be fed continuously through the welding equipment. Since the small electrodes have a high surface-to-volume ratio, they should be clean and free of contaminants which may cause weld defects such as porosity and cracking. Figure 6-6 shows the gas metal arc welding process. All commercially important metals such as carbon steel, stainless steel, aluminum, and copper can be welded with this process in all positions by choosing the appropriate shielding gas, electrode, and welding conditions.

gas metal arc welding

(6) Shielded metal-arc welding. The arc is drawn between a covered consumable metal electrode and workpiece. The electrode covering is a source of arc stabilizers, gases to exclude air, metals to alloy the weld, and slags to support and protect the weld. Shielding is obtained from the decomposition of the electrode covering. Pressure is not used and filler metal is obtained from the electrode. Shielded metal arc welding electrodes are available to weld carbon and low alloy steels; stainless steels; cast iron; aluminum, copper, and nickel, and their alloys. Figure 6-7 describes the shielded metal arc welding process.

shielded metal arc welding

(7) Atomic hydrogen welding. The arc is maintained between two metal electrodes in an atmosphere of hydrogen. Shielding is obtained from the hydrogen. Pressure and/or filler metal may or may not be used. Although the process has limited industrial use today, atomic hydrogen welding is used to weld hard-to-weld metals, such as chrome, nickel, molybdenum steels, Inconel, Monel, and stainless steel. Its main application is tool and die repair welding and for the manufacture of steel alloy chain.

(8) Arc spot welding. An arc spot weld is a spot weld made by an arc welding process. A weld is made in one spot by drawing the arc between the electrode and workpiece. The weld is made without preparing a hole in either member. Filler metal, shielding gas, or flux may or may not be used. Gas tungsten arc welding and gas metal arc welding are the processes most commonly used to make arc spot welds. However, flux-cored arc welding and shielded metal arc welding using covered electrodes can be used for making arc spot welds.

(9) Arc seam welding. A continuous weld is made along faying surfaces by drawing the arc between an electrode and workpiece. Filler metal, shielding gas, or flux may or may not be used.

b. Carbon Electrode.

(1) Carbon-arc welding. In this process, the arc is drawn between electrode and the workpiece. No shielding is use. Pressure and/or filler metal may or may not be used. Two types of electrodes are used for carbon arc welding: The pure graphite electrode does not erode away as quickly as the carbon electrode, but is more expensive and more fragile.

(2) Twin carbon-arc welding. In this variation on carbon-arc welding, the arc is drawn between two carbon electrodes. When the two carbon electrodes are brought together, the arc is struck and established between them. The angle of the electrodes provides an arc that forms in front of the apex angle and fans out as a soft source of concentrated heat or arc flame, softer than a single carbon arc. Shielding and pressure are not used. Filler metal may or may not be used. The twin carbon-arc welding process can also be used for brazing.

(3) Gas-carbon arc welding. This process is also a variation of carbon arc welding, except shielding by inert gas or gas mixture is used. The arc is drawn between a carbon electrode and the workpiece. Shielding is obtained from an inert gas or gas mixture. Pressure and/or filler metal may or may not be used.

(4) Shielded carbon-arc welding. In this carbon-arc variation, the arc is drawn between a carbon electrode and the workpiece. Shielding is obtained from the combustion of a solid material fed into the arc, or from a blanket of flux on the arc, or both. Pressure and/or filler metal may or may not be used.


Gas welding processes are a group of welding processes in which a weld is made by heating with a gas flame or flares. Pressure and/or filler metal may or may not be used. Also referred to as oxyfuel gas welding, the term gas welding is used to describe any welding process that uses a fuel gas combined with oxygen, or in rare cases, with air, to produce a flame having sufficient energy to melt the base metal. The fuel gas and oxygen are mixed in the proper proportions in a chamber, which is generally a part of the welding tip assembly. The torch is designed to give the welder complete control of the welding flare, allowing the welder to regulate the melting of the base metal and the filler metal. The molten metal from the plate edges and the filler metal intermix in a common molten pool and join upon cooling to form one continuous piece. Manual welding methods are generally used.Acetylene was originally used as the fuel gas in oxyfuel gas welding, but other gases, such as MAPP gas, have also been used. The flames must provide high localized energy to produce and sustain a molten pool. The flames can also supply a protective reducing atmosphere over the molten metal pool which is maintained during welding. Hydrocarbon fuel gases such as propane, butane, and natural gas are not suitable for welding ferrous materials because the heat output of the primary flame is too low for concentrated heat transfer, or the flame atmosphere is too oxidizing. Gas welding processes are outlined below.

a. Pressure Gas Welding. In this process, a weld is made simultaneously over the entire area of abutting surfaces with gas flames obtained from the combustion of a fuel gas with oxygen and the application of pressure. No filler metal is used. Acetylene is normally used as a fuel gas in pressure gas welding. Pressure gas welding has limited uses because of its low flame temperature, but is extensively used for welding lead.

b. Oxy-Hydrogen Welding. In this process, heat is obtained from the combustion of hydrogen with oxygen. No pressure is used, and filler metal may or may not be used. Hydrogen has a maximum flame temperature of 4820°F (2660°C), but has limited use in oxyfuel gas welding because of its colorless flare, which makes adjustment of the hydrogen-oxygen ratio difficult. This process is used primarily for welding low melting point metals such as lead, light gage sections, and small parts.

c. Air-Acetylene Welding. In this process, heat is obtained from the combustion of acetylene with air. No pressure is used, and filler metal may or may not be used. This process is used extensively for soldering and brazing of copper pipe.

d. Oxy-Acetylene Welding. In this process, heat is obtained from the combustion of acetylene with oxygen. Pressure and/or filler metal may or may not be used. This process produces the hottest flame and is currently the most widely used fuel for gas welding.

e. Gas Welding with MAPP Gas. Standard acetylene gauges, torches, and welding tips usually work well with MAPP gas. A neutral MAPP gas flame has a primary cone about 1 1/2 to 2 times as long as the primary acetylene flame. A MAPP gas carburizing flame will look similar to a carburizing acetylene flame will look like the short, intense blue flame of the neutral flame acetylene flame. The neutral MAPP gas flame very deep blue


Brazing is a group of welding processes in which materials are joined by heating to a suitable temperature and by using a filler metal with a melting point above 840°F (449°C), but below that of the base metal. The filler metal is distributed to the closely fitted surfaces of the joint by capillary action. The various brazing processes are described below.

a. Torch Brazing (TB). Torch brazing is performed by heating the parts to be brazed with an oxyfuel gas torch or torches. Depending upon the temperature and the amount of heat required, the fuel gas may be burned with air, compressed air, or oxygen. Brazing filler metal may be preplaced at the joint or fed from handheld filler metal. Cleaning and fluxing are necessary. Automated TB machines use preplaced fluxes and preplaced filler metal in paste, wire, or shim form. For manual torch brazing, the torch may be equipped with a single tip, either single or multiple flame.

b. Twin Carbon-Arc Brazing. In this process, an arc is maintained between two carbon electrodes to produce the heat necessary for welding.

c. Furnace Brazing. In this process, a furnace produces the heat necessary for welding. In furnace brazing, the flame does not contact the workpiece. Furnace brazing is used extensively where the parts to be brazed can be assembled with the filler metal preplaced near or in the joint. brazing operation. Figure 6-8 illustrates a furnace

furnace brazing operation

d. Induction Brazing. In this process, the workpiece acts as a short circuit in the flow of an induced high frequency electrical current. The heat is obtained from the resistance of the workpiece to the current. Once heated in this manner, brazing can begin. Three common sources of high frequency electric current used for induction brazing are the motor-generator, resonant spark gap, and vacuum tube oscillator. For induction brazing, the parts are placed in or near a water-cooled coil carrying alternating current. Careful design of the joint and the coil are required to assure the surfaces of all members of the joint reach the brazing temperature at the same time. Typical coil designs are shown in figure 6-9.

typical induction brazing coils and joints

e. Dip Brazing. There are two methods of dip brazing: chemical bath and molten metal bath. In chemical bath dip brazing, the brazing filler metal is preplaced and the assembly is immersed in a bath of molten salt, as shown in figure 6-10. The salt bath furnishes the heat necessary for brazing and usually provides the necessary protection from oxidation. The salt bath is contained in a metal or other suitable pot and heated. In molten metal bath dip brazing, the parts are immersed in a bath of molten brazing filler metal contained in a suitable pot. A cover of flux should be maintained over the molten bath to protect it from oxidation. Dip brazing is mainly used for joining small parts such as wires or narrow strips of metal. The ends of wires or parts must be held firmly together when removed from the bath until the brazing filler metal solidifies.

chemical bath dip brazing

f. Resistance Brazing. The heat necessary for resistance brazing is obtained from the resistance to the flow of an electric current through the electrodes and the joint to be brazed. The parts of the joint are a part of the electrical current. Brazing is done by the use f a low-voltage, high-current transformer. The conductors or electrodes for this process are made of carbon, molybdenum, tungsten or steel. The parts to be brazed are held between two electrodes and the proper pressure and current are applied. Pressure should be maintained until the joint has solidified.

g. Block Brazing. In this process, heat is obtained from heated blocks applied to the part to be joined.

h. Flow Brazing. In flow brazing, heat is obtained from molten, nonferrous metal poured over the joint until the brazing temperature is obtained.

i. Infrared Brazing (IRB). Infrared brazing uses a high intensity quartz lamp as a heat source. The process is suited to the brazing of very thin materials and is normally not used on sheets thicker than 0.50 in. (1.27 cm). brazed are supported in a position which enables radiant energy to be focused on the joint. The assembly and the lamps can be placed in an evacuated or controlled atmosphere. Figure 6-11 illustrates the equipment used for infrared brazing.

Infrared brazing apparatus

j. Diffusion Brazing (DFB). Unlike all of the previous brazing processes, diffusion brazing is not defined by its heat source, but by the mechanism involved. A joint is formed by holding the brazement at a suitable temperature for a sufficient time to allow mutual diffusion of the base and filler metals. The joint produced has a composition considerably different than either the filler metal or base metal, and no filler metal should be discernible in the finished microstructure. The DFB process produces stronger joints than the normal brazed joint. Also, the DFB joint remelts at temperatures approaching that of the base metal. The typical thickness of the base metals that are diffusion brazed range from very thin foil up to 1 to 2 in. (2.5 to 5.1 cm) thick. Much heavier parts can also be brazed since thickness has very little bearing on the process. Many parts that are difficult to braze by other processes can be diffusion brazed. Both butt and lap joints having superior mechanical properties can be produced, and the parts are usually fixtured mechanically or tack welded together. Although DFB requires a relatively long period of time (30 minutes to as long as 24 hours) to complete, it can produce many parts at the same time at a reasonable cost. Furnaces are most frequently used for this method of processing.

k. Special Processes.

(1) Blanket brazing is another process used for brazing. A blanket is resistance heated, and most of the heat is transferred to the parts by conduction and radiation. Radiation is responsible for the majority of the heat transfer.

(2) Exothermic brazing is another special process, by which the heat required to melt and flow a commercial filler metal is generated by a solid state exothermic chemical reaction. An exothermic chemical reaction is any reaction between two or more reactants in which heat is given off due to the free energy of the system. Exothermic brazing uses simple tooling and equipment. The process uses the reaction heat in bringing adjoining or nearby metal interfaces to a temperature where preplaced brazing filler metal will melt and wet the metal interface surfaces. The brazing filler metal can be a commercially available one having suitable melting and flow temperatures. The only limitations may be the thickness of the metal that must be heated through and the effects of this heat, or any previous heat treatment, on the metal properties.


Resistance welding consists of a group of processes in which the heat for welding is generated by the resistance to the electrical current flow through the parts being joined, using pressure. It is commonly used to weld two overlapping sheets or plates which may have different thicknesses. A pair of electrodes conducts electrical current through the sheets, forming a weld. The various resistance processes are outlined below.

a. Resistance Spot Welding. In resistance spot welding, the size and shape of the individually formed welds are limited primarily by the size and contour of the electrodes. The welding current is concentrated at the point of joining using cylindrical electrodes with spherical tips. The electrodes apply pressure.

b. Resistance Seam Welding. This weld is a series of overlapping spot welds made progressively along a joint by rotating the circular electrodes. Such welds are leak tight. A variation of this process is the roll spot weld, in which the spot spacing is increased so that the spots do not-overlap and the weld is not leak tight. In both processes, the electrodes apply pressure.

c. Projection Welding. These welds are localized at points predetermined by the design of the parts to be welded. The localization is usually accomplished by projections, embossments, or intersections. The electrodes apply pressure.

d. Flash Welding. In this process, heat is created at the joint by its resistance to the flow of the electric current, and the metal is heated above its melting point. Heat is also created by arcs at the interface. A force applied immediately following heating produces an expulsion of metal and the formation of a flash. The weld is made simultaneously over the entire area of abutting surfaces by the application of pressure after the heating is substantially completed.

e. Upset Welding. In this process, the weld is made either simultaneously over the entire area of two abutting surfaces, or progressively along a joint. Heat for welding is obtained from the resistance to the flow of electric current through the metal at the joint. Force is applied to upset the joint and start a weld when the metal reaches welding temperature. In some cases, force is applied before heating starts to bring the faying surfaces in contact. Pressure is maintained throughout the heating period.

f. Percussion Welding. This weld is made simultaneously over the entire area of abutting surfaces by the heat obtained from an arc. The arc is produced by a rapid discharge of electrical energy. It is extinguished by pressure applied percussively during the discharge.

g. High–Frequency Welding. High frequency welding includes those processes in which the joining of metals is produced by the heat generated from the electrical resistance of the workpiece to the flow of high-frequency current, with or without the application of an upsetting force. The two processes that utilize high-frequency current to produce the heat for welding are high-frequency resistance welding and high-frequency induction welding, sometimes called induction resistance welding. Almost all high-frequency welding techniques apply some force to bring the heated metals into close contact. During the application or force, an upset or bulging of metal occurs in the weld area.


a. Thermite welding (TW) is a process which joins metals by heating them with superheated liquid metal from a chemical reaction between a metal oxide and aluminum or other reducing agent, with or without the application of pressure. Filler metal is obtained from the liquid metal.

b. The heat for welding is obtained from an exothermic reaction or chemical change between iron oxide and aluminum. This reaction is shown by the following formula:

8A1 + 3fe304 = 9FE + 4A1203 + Heat

The temperature resulting from this reaction is approximately 4500°F (2482°C).

c. The superheated steel is contained in a crucible located immediately above the weld joint. The exothermic reaction is relatively slow and requires 20 to 30 seconds, regardless of the amount of chemicals involved. The parts to be welded are aligned with a gap between them. The superheated steel runs into a mold which is built around the parts to be welded. Since it is almost twice as hot as the melting temperature of the base metal, melting occurs at the edges of the joint and alloys with the molten steel from the crucible. Normal heat losses cause the mass of molten metal to solidify, coalescence occurs, and the weld is completed. If the parts to be welded are large, preheating within the mold cavity may be necessary to bring the pats to welding temperature and to dry out the mold. If the parts are small, preheating is often eliminated. The thermite welding process is applied only in the automatic mode. Once the reaction is started, it continues until completion.

d. Thermite welding utilizes gravity, which causes the molten metal to fill the cavity between the parts being welded. It is very similar to the foundry practice of pouring a casting. The difference is the extremely high temperature of the molten metal. The making of a thermite weld is shown in figure 6-12. When the filler metal has cooled, all unwanted excess metal may be removed by oxygen cutting, machining, or grinding. The surface of the completed weld is usually sufficiently smooth and contoured so that it does not require additional metal finishing. Information on thermite welding equipment may be found in Section V of Chapter 5.

steps in making a thermite weld

e. The amount of thermite is calculated to provide sufficient metal to produce the weld. The amount of steel produced by the reaction is approximately one-half the original quantity of thermite material by weight and one-third by volume.

f. The deposited weld metal is homogeneous and quality is relatively high. Distortion is minimized since the weld is accomplished in one pass and since cooling is uniform across the entire weld cross section. There is normally shrinkage across the joint, but little or no angular distortion.

g. Welds can be made with the parts to be joined in almost any position as long as the cavity has vertical sides. If the cross-sectional area or thicknesses of the parts to be joined are quite large, the primary problem is to provide sufficient thermite metal to fill the cavity.

h. Thermite welds can also be used for welding nonferrous materials. The most popular uses of nonferrous thermite welding are the joining of copper and aluminum conductors for the electrical industry. In these cases, the exothermic reaction is a reduction of copper oxide by aluminum, which produces molten superheated copper. The high-temperature molten copper flows into the mold, melts the ends of the parts to be welded, and, as the metal cools, a solid homogeneous weld results. In welding copper and aluminum cables, the molds are made of graphite and can be used over and over. When welding nonferrous materials, the parts to be joined must be extremely clean. A flux is normally applied to the joint prior to welding. Special kits are available that provide the molds for different sizes of cable and the premixed thermite material. This material also includes enough of the igniting material so that the exothermic reaction is started by means of a special lighter.

No tags for this post.